Private, Public, Personal: Shifting Patterns in Geospatial Data Sources in Geographic Research

Has there been a 'data shift' in peer-reviewed GIS research?

Research Questions

(1) How has government geospatial data usage changed over time in GIS research?

(2) Which types of GIS subfields (spatial statistics, VGI, ABM) tend to use government data?

(3) Are funding sources listed in GIS analyses? Are data made available?

Bibliometric Analysis

-Six journals*

International Journal of Geographical Information Science (IJGIS);

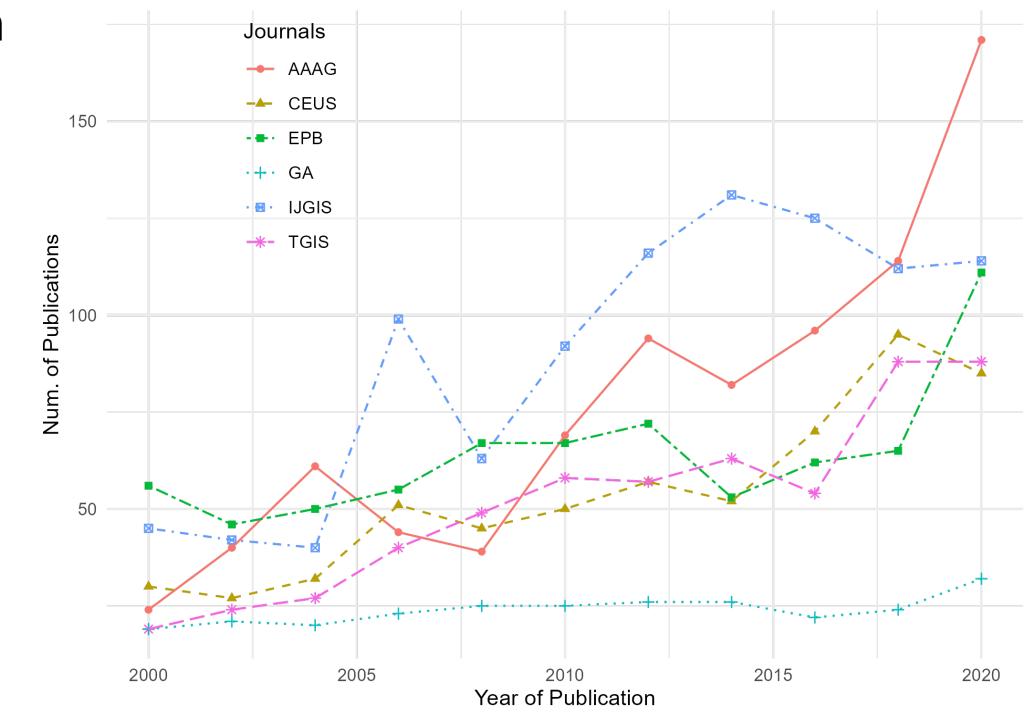
Computers, Environment and Urban Systems (CEUS);

Transactions in GIS (TGIS);

Geographical Analysis (GA);

Environment and Planning B (EPB);

Annals of the American Association of Geographers (AAAG).

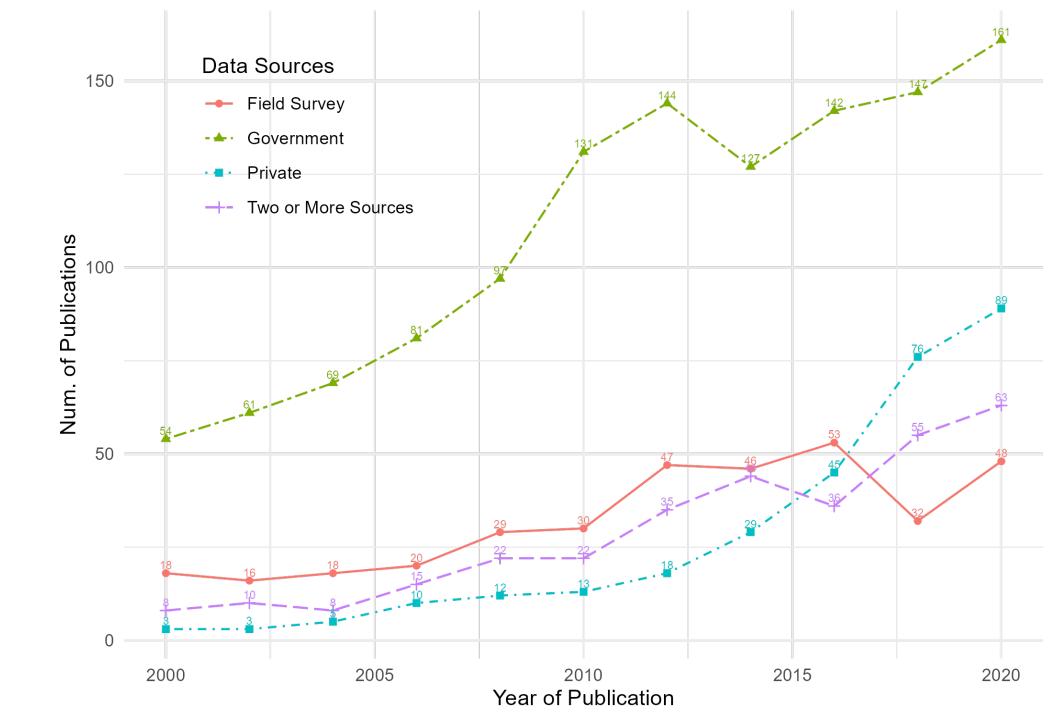

-2,192 articles (2000 to 2020 every other year). In total, we reviewed 3,537 articles.

*"Please list the top six GIS/Geography/Urban Analytics flagship journals that publish articles that conduct geospatial data analysis."

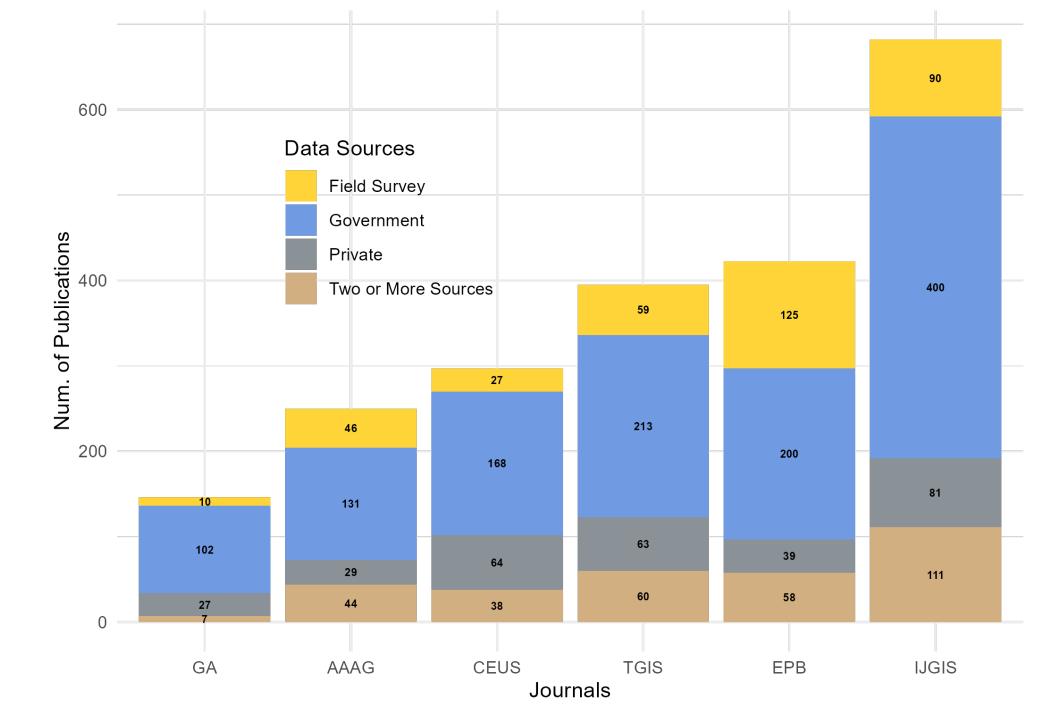
We classified data type as a private, public, or fieldwork source.

DATA SOURCE TYPES	DESCRIPTION		
PRIVATE	Data collected by private companies (e.g., Google, Weibo, Yelp, CitiBike, Facebook, Twitter)		
GOVERNMENT	Data collected by governmental organisations (e.g., U.S. Census Bureau, EPA, USGS)		
FIELD SURVEY	Data collected on-location, through interviews, focus group discussions, field observations, etc.		
TWO OR MORE SOURCES	Articles using at least two different data sources		

Publication volume by journal


Research Questions

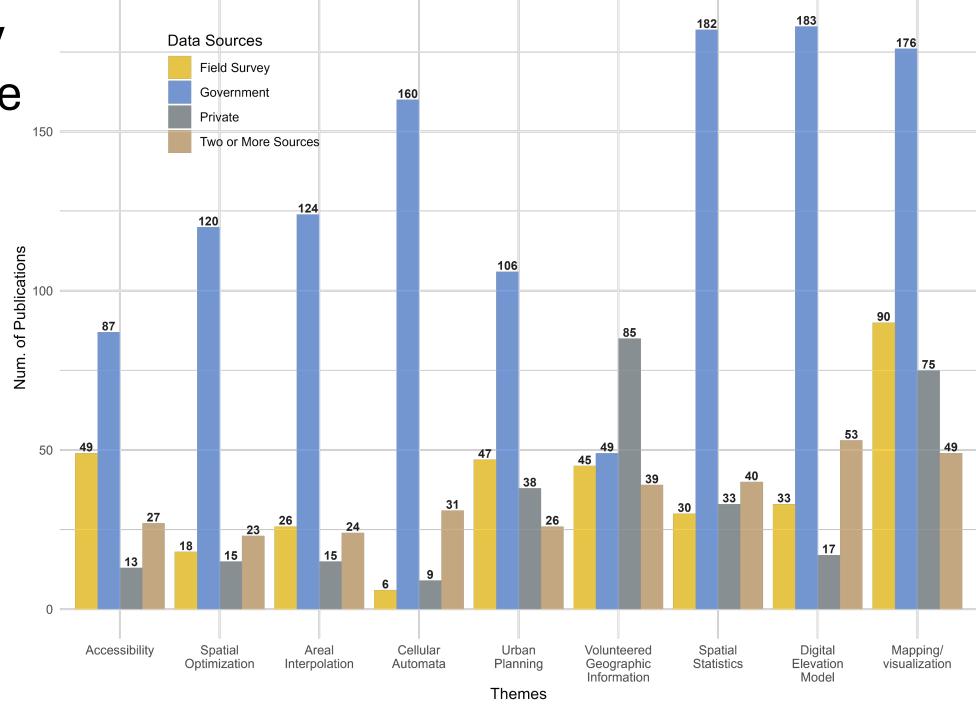
(1) How has government geospatial data usage changed over time in GIS research?


(2) Which types of GIS subfields (spatial statistics, VGI, ABM) tend to use government data?

(3) Are funding sources listed in GIS analyses? Are data made available?

Types of data used in journal articles over time

Data type by journal


Research Questions

(1) How has government geospatial data usage changed over time in GIS research?

(2) Which types of GIS subfields (spatial statistics, VGI, ABM) tend to use government data?

(3) Are funding sources listed in GIS analyses? Are data made available?

Data type by article theme

Unpublished Result

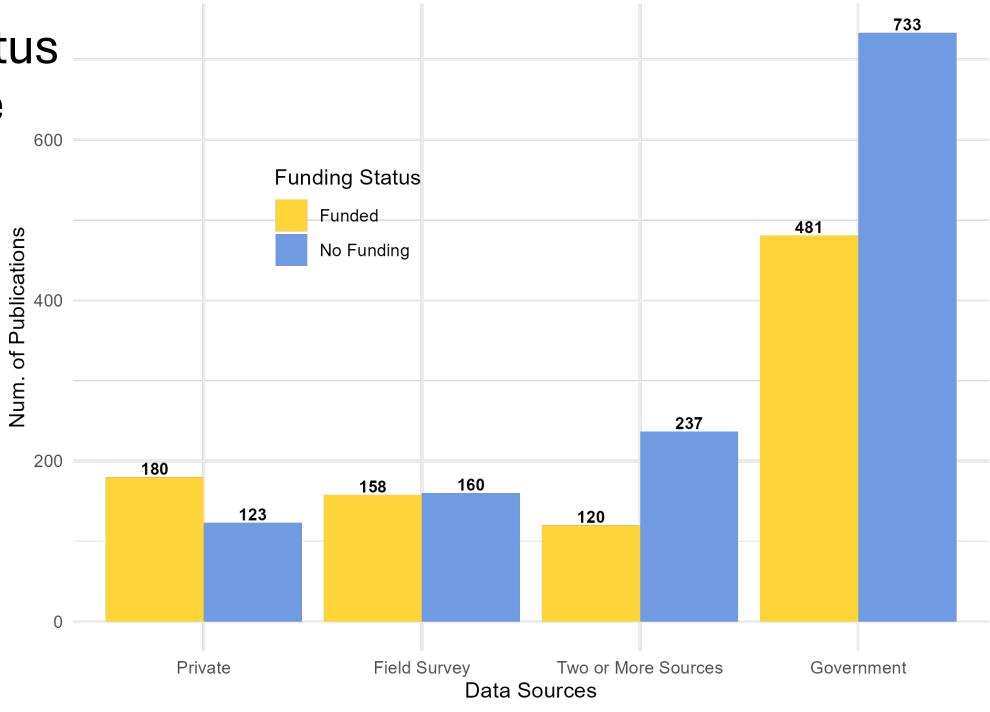
Did certain data types pair with analysis methods?

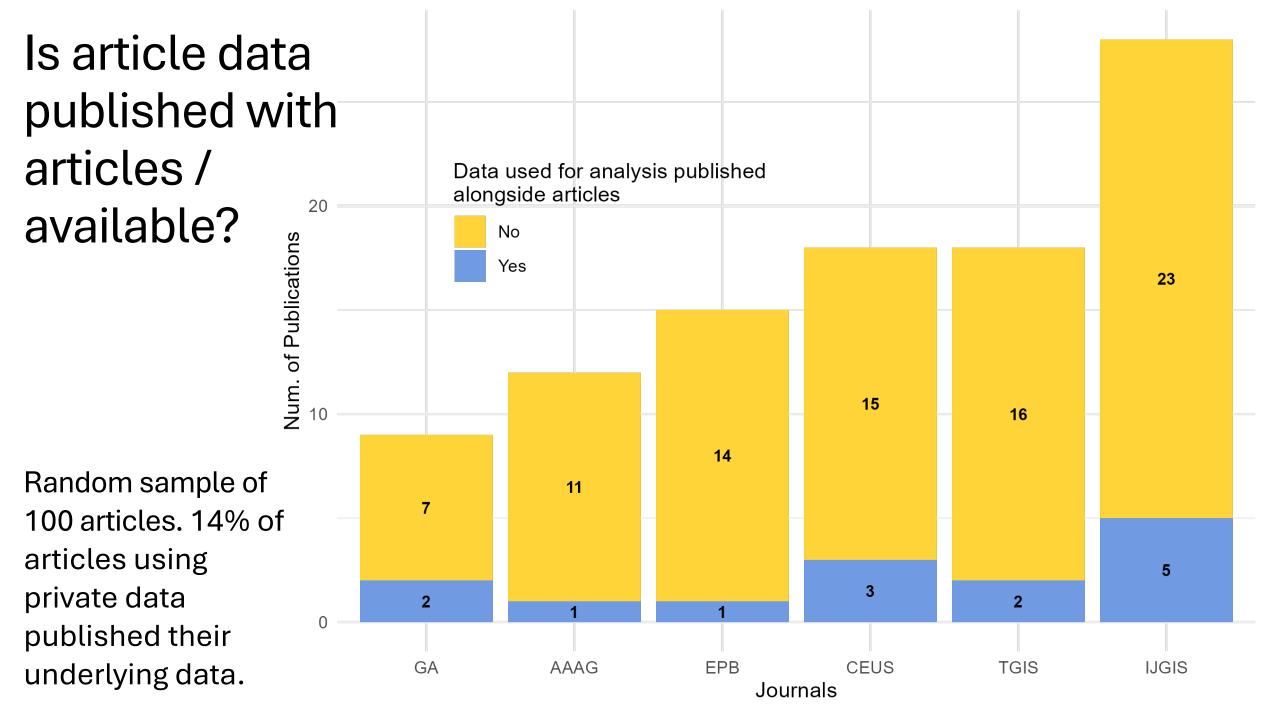
- 1 (basic)-Summary statistics
- 2 (medium) -Logistic regression
- 3 (advanced) -Agent based model or ML

Fieldwork tended to have more basic methods.

Govt and private sector tended to have more advanced methods.

Research Questions


(1) How has government geospatial data usage changed over time in GIS research?


(2) Which types of GIS subfields (spatial statistics, VGI, ABM) tend to use government data?

(3) Are funding sources listed in GIS analyses? Are data made available?

Is a funding source **Funding Status** 200 listed with Funding No Funding the article? Num. of Publications 150 100 80. 50 26 2010 2000 2005 2015 2020 Year of Publication

Funding status by data type

Limitations

-None.

Limitations

- -Journal choices and time choices
- -Human error
- -Line between government and private sector is blurry
- -Unclear the role of each data type in the paper

Takeaways

- Private sector data in peer reviewed research has increased but researchers still rely on government-collected data.
- 2) We should have access to a wide variety of sources (for replicating studies and helping less-funded researchers).
- Private sector data should have metadata standards so researchers can be aware of the context of data.
- 4) We have a really nice data corpus and are looking for co-authors.

Source:

Appiah, G, Kaufman, M, Cooney, B and Andris, C. Private, Public, Personal: Shifting Patterns in Geospatial Data Sources in Geographic Research. Annals of the American Association of Geographers (2024): 1-19. doi.org/10.1080/24694452.2024.2394078

companies, have generated many large geospatial data sets. These data sets complement traditional government-collected data sets from entities such as the U.S. Census Bureau, National Aeronautics and Space Administration (NASA), Centers for Disease Control and Prevention (CDC), U.S. Geological Survey (USGS), Environmental Protection Agency (EPA), National Oceanic and Atmospheric Administration (NOAA), and data gathered through field work. This trend means that the U.S. government does not just produce spatial data but also plays the roles of data coordinator, partner, facilitator, and manager (National Geospatial Advisory

QR CODE PDF (choose Open In Browser)

administrative boundaries, and demographic data,

such as population density and income, and other

data sets for thematic mapping soon followed. Over

the past twenty years, GIS has embraced the rapid

growth of large data sets evidencing movement, con-

sumer purchases, telecommunications, Web use, and

content generation from social media and other

sources (Goyal, Sharma, and Joshi 2017); these data

Appendix: Creating GIS themes

cellular automata

change

24

23

interpolation

segregation

We used VOSviewer software. We generated an article network with 2,143 papers and over 69,000 edges where two papers had similar bibliographies, and we used the community detection algorithm in VOSviewer to create 9 classes.

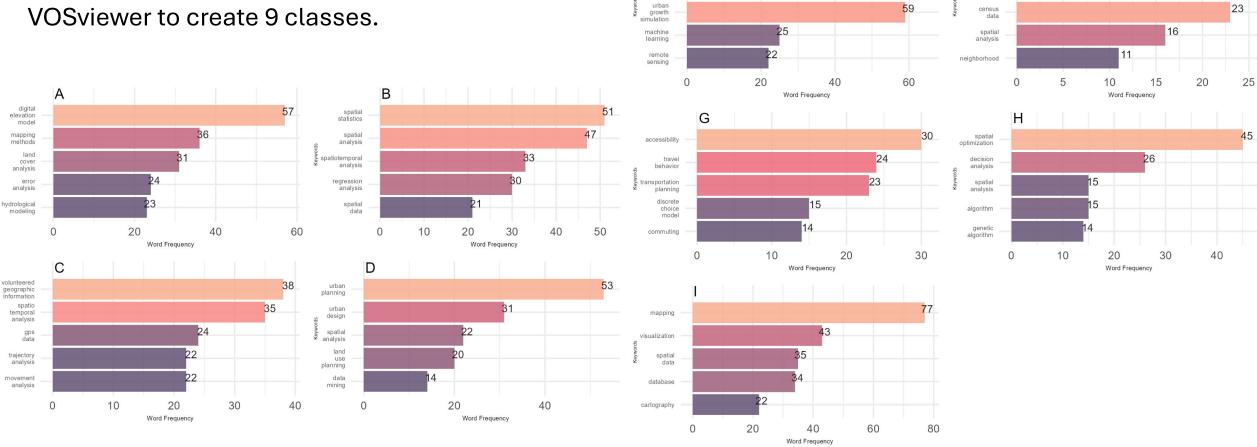


Table B.1. Data type, data sources, and methods used by selected articles

Data type	Example of data	Data sources	Methods	Reference
Social media	Tweets, check-in data, points of interest, Flickr users	Twitter, Weibo, Flickr, Web crawling, Yelp	Shannon entropy measure, K-means cluster algorithm, space–time multiple regression model	Longley and Adnan (2016), Lwin, Sugiura, and Zettsu (2016)
			Labeled Dirichlet allocation, radius of gyration. Monte Carlo test for spatial independence	Xin and MacEachren(2020)
			Support vector model (SVM), weighted most frequently visited, kernel density estimation	Church and Li (2016), Lin and Cromley (2018), Ristea et al. (2020)
Transportation	Road network, public transport system data, vehicle trajectory data set, bike sharing trip data, routing	ESRI, OpenStreetMap (OSM), TomTom, Movebank, Mapillary, Google	Jam flow algorithm, cold scan algorithm, network analysis and principal component analysis, radius of gyration,	Kohan and Ale (2020), Derudder and Taylor (2020), Juhász and Hochmair (2016)
	information, digital tracing of taxi, GPS tracing data		power law function Time semi-Markov process for vehicular mobility, shortest path algorithm, nonnegative matrix factorization, hierarchical clustering, frequent pattern mining	Song et al. (2016), Mayhew and Hyman (2000), Turdukulov et al. (2014)
	Street network, GTFS, TIGER lines, travel survey	U.S. Census Bureau, Transit Agencies, Statistics Canada, National Mapping Agency of Lower Saxony	Simulation, network routing Dijkstra algorithm, accessibility analysis	Keon et al. (2014), El- Geneidy et al. (2016)
Remote sensing data	LiDAR points, aerial images	Info Terra, Google Earth, Horizons Inc.	K-means algorithm, rough set theory, random forest regression analysis	Wan, Lei, and Chou. (2012), Redo, Aide, and Clark (2012)
	Landsat images, DEMs, LiDAR, National Land Cover data sets, building footprint	U.S. Geological Survey and Multi-Resolution Land Characteristics (MRLC) Consortium	Random forest regression, multilinear regression, model, gradient boost model, land-use classification, interpolation, hydrology modeling	Yin et al. (2020), Zhao et al. (2016), Kaučič and Žalik (2004), Brovelli, Cannata, and Longoni (2004)
Demography and socioeconomic	Population, income, employment status, percentage of immigrants, high- resolution global population data set, etc.	U.S. Census Bureau, Statistics Canada, Dubai Statistical Survey Department, Oak Ridge National Laboratory	Area interpolation techniques, spatial dynamic model, genetic algorithm, Monte Carlo approach, simulated annealing and iterative proportional fitting	K. Li and Lam (2018), Durán-Heras, García- Gutiérrez, and Castilla-Alcalá (2018)

Table B.1. (Continued).

Data type	Example of data	Data sources	Methods	Reference
			Regression analysis, functional principal component analysis, structural equation model, agent-based modeling, logistic modeling	Parry et al. (2018), Ewing, Hamidi, and Grace (2016), Jepsen et al. (2006)
Environmental data	Natural hazard damage data, location of water bodies, slope, vegetation cover, soils, meteorological data, flood plans, bathymetric survey data	NOAA National Climate Data Center, U.S. Geological Survey, European Commissions Soil Geographical Database, Czech Meteorological Institute, German Federal Meteorological Authorities	Area interpolation techniques, genetic algorithm, spatial dynamic model, Monte Carlo approach, multicriterial least cost path analysis	K. Li and Lam (2018), Hanke, Lambert, and Smith (2014)
Energy	Location of gas reservoirs, pipelines, and gas wells	China National Petroleum Corporation, Louisiana Department of Natural Resources Oracle database	Backpropagation artificial neural network, geological empirical evaluation methods, qualitative analysis	Chen, Wang, and Li (2016), Hill (2002)
Phone location data	Mobile phone activity data, cellular phone activities	Seoul Institute and S.K. Telecom, Kokusai Denshin Denwa Inc.	Space-time multiple regression model, functional principal component analysis	Lwin, Sugiura, and Zettsu (2016), Kim (2020)
Housing data	Parcel data, housing data, appraisals of residential houses, property prices	OSM, Zillow Inc., UniCredit Bank Austria, private real estate company	Delaunay triangulation, Gaussian function, distance decay effect, hierarchical classification, univariate kriging variants and multivariate extensions	Bruhns et al. (2000), Kuntz and Helbich (2014)
			Hedonic pricing model, space syntax, regression- kriging, multivariate regression, fuzzy set approach	Lai et al. (2006), Morales et al. (2020) Oh and Jeong (2002)
Paper maps	Topographic maps, cadastral maps, land- use maps, vegetation maps, swamp maps, and glacier	U.S. Geological Survey, National Mapping Agency of Lower Saxony, Ordnance Survey	Deep convolutional neural-network-based framework, semantic similarity Qualitative analysis, hierarchical model, Bayesian probability	Saeedimoghaddam and Stepinski (2020), Al- Bakri and Fairbairn (2012) Williams et al. (2006), Winter et al. (2008), Ran et al. (2012)

Note: GPS = Global Positioning System; GTFS = general transit feed specification; DEMs = digital elevation models; NOAA = National Oceanic and Atmospheric Administration.