Status update for the NGS multi-year CORS reprocessing effort

- summary of processing strategy
- updated velocity field and main use of solution at NGS
- NAD 83 position changes

by

J. Griffiths NOAA/National Geodetic Survey

(jake.griffiths@noaa.gov)

with significant contributions from:

J.R. Rohde, M. Cline, R.L. Dulaney, S. Hilla, W.G. Kass, J. Ray, G. Sella, R. Snay, T. Soler and Z. Altamimi

U.S. CORS Network

- currently ~1500 sites
 - mostly in U.S.
- used to provide access to the U.S.
 National Spatial Reference System
 - current realization based on ITRF2000
- also supports meteorology, space weather and other geophysical applications

How is Multi-year CORS Solution Obtained?

- CORS RINEX observations processed in global framework using NGS reprocessed orbits, EOPs and global station coordinates
 - global frame realized by:
 - switch to absolute antenna calibrations; and
 - estimating GPS satellite orbit ephemerides, Earth Orientation Parameters (EOPs) and global station positions (no net rotation; NNR)
- resulting in full history of weekly CORS+global SINEX files containing X,Y,Z positions and full variance-covariance information
- use CATREF software from Institut Géographique National (IGN) to stack weekly CORS+global SINEX files in three steps:
 - step 1: focused on attenuating aliasing of Helmerts from local non-linear motions
 - step 2: impose "unbiased" Helmert parameters on whole network & stack
 - step 3: obtain MYCS—i.e., align "unbiased" stacked TRF to ITRF2008 via GPS sites common to both SNXs
 - scale is inherited from ITRF
 - Step 4: (TBD) apply ITRF2008 -> IGS08 position corrections to account for impending switch to IGS08 absolute antenna calibration
- Result is a new positions and velocities for CORS

Changes in Horizontal NAD 83 Positions

NAD 83(CORS96a @ 2002.0) - NAD 83(CORS96 @ 2002.0)

- approx. 2 cm error expected @ 2005.0 (based on σ in old solution)
- avg. horizontal shifts: $\Delta E = -0.17 (\pm 1.86) \text{ cm}$ $\Delta N = 0.20 (\pm 2.31) \text{ cm}$
 - prescribing velocities using numerical models (i.e. HTDP)
 - smaller random part probably caused by change to absolute antenna calibrations

Changes in Vertical NAD 83 Positions

NAD 83 (CORS96a @ 2002.0) - NAD 83 (CORS96 @ 2002.0)

- avg. vertical shift: $\Delta U = 0.65$ cm (± 2.08) cm
 - random part mostly caused by <u>switch to absolute antenna calibrations</u>
 - shifts also caused by assuming V_u = 0 in NAD 83(CORS96)

Conclusions

- 1st reprocessing at NGS of global and U.S. CORS GPS data collected since 1994 is complete
- provisional solution is complete
- new NAD 83 positions and velocities result in coordinate changes:

```
-\Delta E = -0.17 (\pm 1.86) cm
```

- $\Delta N = 0.20 (\pm 2.31) cm$
- $-\Delta U = 0.65 \text{ cm } (\pm 2.08) \text{ cm}$
- updated, more accurate 3D velocity field for crustal motion models and other tectonic studies
- official solution expected to be complete by spring 2011

Backup Slides

Tying CORS to Global Network

(~1600 sites in recent weekly CORS+glbl SNX files)

- global tracking network used for estimating:
 - GPS satellite orbits (15-min intervals)
 - terrestrial framework
 - Earth Orientation (EOPs)
 - global station positions (weekly averages)

- U.S. CORS tied to global framework via single baselines radiating from global stations
 - minimizes frame distortions from local effects in dense regional networks

Design of Global Tracking Network

Quality of NG1 Orbits: WRMS of AC Orbits (w.r.t. IG1)

Quality of global TRF: NG1 w.r.t. IG1 Weekly Combo

- agreement with IGS frame is critical for aligning to ITRF in downstream processing

Courtesy: IGS Reference Frame Coordinator [2010]

Tie CORS to Global Frame & Stack

- CORS RINEX observations reduced in global framework
 - tie remaining CORS to backbone sites via single baselines
 - hold fixed NGS reprocessed orbits & EOPs
 - adjust CORS+global station coordinates (NNR over IGS05 sites)
- full history of consistent weekly CORS+global SINEX files
- use CATREF software (from Institut Géographique National, France) to stack weekly CORS+global SINEX files:
 - step 1: attenuate aliasing effects caused by local non-linear motions
 - sub-network of ~90 sites
 - derive "unbiased" weekly Helmert parameters by stacking over sub-network
 - weekly scale changes are assumed to be zero for this step
 - step 2: impose "unbiased" Helmert parameters on whole network & stack
 - step 3: align "unbiased" stacked TRF to ITRF2008
 - scale is inherited from ITRF
 - variance-covariance re-scaled w.r.t. ITRF
 - overall stacking strategy follows one developed by X. Collilieux (IGN); more details of procedure at http://beta.ngs.noaa.gov/myear/

Discontinuities

- Global (or non-CORS) sites
 - adopted those in ITRF2008 for overlap period
 - added discontinuities for 30 sites
 - for periods before (1994.0 -> 1997.0) and after (2009.5 -> 2010.5) overlap
 - equip. changes & physical events
- CORS sites
 - equip. changes, physical events & empirical jumps
- automated procedures used for detecting empirical discontinuities:
 - SIGSEG [Vitti, 2009]
 - analytical method can detect position & velocity jumps
 - finds segments described by a smooth, general function
 - works on noisy series—manual tuning of input parameters
 - currently requires evenly spaced-data & no data gaps
 - Change-point Analysis [Taylor, 2000]—impl. by X. Collilieux (IGN) & K. Senior (NRL)
 - analytical method detects position jumps
 - segments are smooth linear functions—requires de-trending
 - implementation introduces explicit handling of white & flicker noise
 - can handle time series with "short" data gaps
 - potential issue of mixing different definitions for what is a "discontinuity"
- only "significant" jumps are inserted—iterative approach used

Attenuating Aliasing Effects in Helmerts

- coord. residuals averaged over subnet sites (see map below)
- amp. of "deterministic" annual signal:
 - North, in-phase ≈ 1.45 mm
 - North, out-of-phase ≈ 0.99 mm
 - East, in-phase ≈ 0.07 mm
 - East, out-of-phase ≈ -0.05 mm
 - Up, in-phase ≈ -0.20 mm
 - Up, out-of-phase ≈ -0.70 mm
- slight bias in N??
 - subnet selection less than optimal
 - signal in U may be masked by noise/error
- early years scattered
- long-term stability is quite good

GM7 2010 Sep 15 11:35:31

Alignment to ITRF2008: Position Differences

ITRF2008 - TRF_{CORS+glbl}

- larger diffs due to discontinuities & longer data spans in TRF_{CORS+glbl}
- diffs < 10 mm (horiz) & 25 mm (vert) mm shown below—larger diffs insignificant at 2σ
- avg. diffs for all sites used in alignment (magenta dots):

Distortions of TRF from adding CORS?

- comparison of TRF_{glbl} & TRF_{CORS+glbl} (i.e., TRF_{glbl} TRF_{CORS+glbl})
 - 14 Helmert parameters are zero
 - most diffs are small (<< 10 mm)
 - larger diffs due to weak frame prior to 1997 and poorly resolve velocities following eqs.
 - no strong regional patterns—adding CORS caused insignificant distortions

Changes in Horizontal NAD 83 Positions

NAD 83(CORS96a @ 2010.0) - NAD 83(CORS96 @ 2002.0)

- approx. 2 cm error expected @ 2005.0 (based on σ in old solution)
- avg. horizontal shifts: $\Delta E = 0.20 (\pm 5.85) \text{ cm}$ $\Delta N = 1.95 (\pm 6.12) \text{ cm}$
 - combination of position and velocity differences
 - due mostly to updated velocities (including up to 8 more years of data)

Changes in Vertical NAD 83 Positions

NAD 83(CORS96a @ 2010.0) - NAD 83(CORS96 @ 2002.0)

- avg. vertical shifts: $\Delta U = -0.9 (\pm 1.82)$ cm
 - combination of position and velocity differences
 - assuming vertical velocity ≈ 0.00 in NAD 83(CORS96)

